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Abstract-A Lagrangian stochastic method of solving the diffusion equation for 

inhomogeneous turbulence is presented in this paper. This numerical method uses (1) a 

first-order approximation for the spatial variation of the eddy diffusivity and (2) the 

corresponding first three particle position moments, to define a non-Gaussian particle 

position distribution. The method handles the case when the eddy diffusivity varies 

linearly to zero at a boundary. This is done by using the first few terms of the series 

representation of the analytic solution for this case to construct the non-Gaussian position 

distribution. Comparison of numerical simulation results to analytic solutions of the 

diffusion equation show that this method is accurate and significantly more efficient than 

a previously used methods that assume a Gaussian particle position distribution. 

Key word index: Random walk dispersion model, diffusion equation, inhomogeneous 

turbulence 

1. INTRODUCTION 

In this paper, we present a Lagrangian stochastic, random walk method for solving the 

diffusion equation for inhomogeneous turbulence. This method is based on a stochastic 



differential equation for particle displacement which describes the ensemble of possible 

fluid particle trajectories (Durbin, 1980 and 1983). The displacement equation describes 

the same process as the diffusion equation for the particle position probability density 

function. A basic assumption of the Lagrangian stochastic approach presented here is that 

the mean turbulent properties of the flow are known, and are described by an eddy 

diffusivity. 

Models based on the diffusion equation have been shown to be useful tools for simulating 

the dispersion of material in the inhomogeneous turbulence found in the atmospheric 

boundary layer, and, in particular, in the surface layer. Nieuwstadt and van Ulden (1978) 

and Gryning et aZ. (1983) successfully simulated disp.ersion from a near-surface source in 

the surface layer under a wide range of stability conditions using an Eulerian diffusion 

equation model. Lagrangian stochastic models based on the diffusion equation have also 

been applied to the problem of dispersion in turbulent boundary layers (e.g., Durbin and 

Hunt, 1980; Boughton et al., 1987; Naslund et al.; 1994; Luhar and Rao, 1994). 

The diffusion equation approach assumes that the evolution of particle position is a 

Markov process, that is, a future particle position depends only on the current position, so 

that displacements are uncorrelated in time. Since displacements are correlated for times 

on the order of the Lagrangian velocity correlation time, TL, the diffusion equation is 

valid for predictions at travel times, t >>T,. Because both TL and wind speed approach 

zero near the surface (e.g., Hunt and Weber, 1979), the diffusion equation is valid even at 

very short times and downwind distance for near-surface sources. It is also valid for 

modeling vertical diffusion in stable boundary layers because TL becomes small 

compared to times typically of interest (Luhar and Rao, 1994). However, TL can become 

large above the surface layer, particularly in the convective boundary layer, and 

alternative Lagrangian stochastic models based on the Langevin equation (which 
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describes a Markov process for the particle velocity) must be used to simulate near- 

source dispersion (e.g., see review by Wilson and Sawford, 1996). 

When valid, the diffusion equation approach can be significantly more efficient than the 

Langevin equation approach. In typical numerical simulation methods for integrating the 

Langevin equation the time step must be significantly smaller than TL. As discussed by 

Durbin and Hunt (1980), this is very restrictive near the surface where parameterizations 

of TL approach zero, and, correspondingly, accurate numerical simulation of the Langevin 

equation using typical methods requires vanishingly small time steps. However, this is 

not a restriction on the diffusion equation approach. 

In previous studies using Lagrangian stochastic models based on the diffusion equation, it 

has been typical to use lowest order (in time) numerical methods and Gaussian- 

distributed random displacements (e.g., Boughton et al., 1987; Nislund et al., 1994; 

Luhar and Rao, 1994). In this paper we present a more efficient and accurate higher order 

numerical simulation method for solving the diffusion equation when the eddy 

diffusivity, K, is a function of position. The method we present accounts for the fact that 
- -- 

if K is inhomogeneous, then the particle position probability distribution is non-Gaussian 

for finite time steps. In Section 2, we briefly review the Lagrangian stochastic approach 

based on the diffusion equation. In Section 3, we present a new method for solving the 

diffusion equation that uses the first three moments of particle position to determine 

accurate approximations to the non-Gaussian probability distribution of particle position. 

In Section 4, we demonstrate the accuracy of this method by comparing Monte Carlo 

numerical simulations results to analytic solutions of the diffusion equation. We also 

compare simulation results obtained using a lowest order numerical method, which uses a 

Gaussian particle position distribution, to the analytic solutions. 
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2. STOCXIASTIC MODEL 

Stochastic models determine the probability distribution of future particle positions, given 

the initial positions..This probability distribution can be used to calculate the ensemble- 

mean concentration of material at a desired time, given the concentration distribution at 

earlier times. Considering one dimension, the ensemble-mean air concentration (mass per 

unit length), C(z,t) , at position z and time t can be determined as follows: 

c(z,t)- j dt, ido q(z,,t,)PW ; z&L 

where q(z,,t,,) represents the source distribution term at position zO at time t,(trace 

material mass emitted per unit time per unit length), and P(z,t ; z,,t,,) is the probability 

density function for the particle position z at time t given it was at position z,, at time to 

(Tennekes and Lumley, 1972). If the source distribution term is constant with time and 

the turbulent flow is stationary, the ensemble-average concentration can be used as an 

estimate of the time-average concentration using the ergodic hypothesis (Lumley and 

Panofsky, 1964). 

In this paper, we use the diffusion equation as a model for the time evolution of the 

transition probability density function for particle position. For a stationary, 

inhomogeneous turbulent flow with no mean Eulerian velocity, the diffusion equation for 

an inert, trace material away from any sources can be written, in one dimension, as 

(2) 

where P = P(z, t ; z,, to) and the eddy diffusivity is a function of z, K = K(z). Below, we 

will study the case in which z is the height above a surface. From Eqs. (1) and (2), it can 

be seen that C(z,t) is also a solution to the diffusion equation, that is, 



ac a 

( 1 
Kac 

-z=dz -z’ 

This is the eddy-diffusivity conservation of species equation. Eq. (1) can therefore be 

considered a general solution to this conservation of species equation. 

The process described by the diffusion equation can also be described by a stochastic 

differential equation for the displacement of a fluid particle, that may be written as 

where dW is a random variate with zero mean and variance dt, i.e., 

dW=o, 

(4) 

dW2 = dt, 

that is uncorrelated in time, i.e., 

dW,, dW,, = 0, if t, f t2 

(Durbin, 1983). An overbar, -, represents the ensemble average of a quantity. This 

equation describes the ensemble of possible particle trajectories. Each trajectory 

represents one realization. Time integration of Eq. (4) provides a means to calculate the 

z(t) trajectory of a particle. This provides a basis for Lagrangian, Monte Carlo numerical 

simulations in which a sample of N independent particle trajectories, 

{z;(t), i = 1,2, . . .N}, from a source are used to estimate P and, given a source 

distribution term, to estimate C(z;t) using Eq. (1). 



3 3. NUMERICAL METHOD 

In lowest order (in time) numerical integration of Eq. (4), new particle positions z(t) are 

generated from a Gaussian distribution PG(z,t ; z,, to) with mean 

i3K ;=z,+-At, 
dZ 

(5) 

and variance 

CT; = (z-q2 = 2KAt, (61 

where At = t - to is the numerical integration time step and z,, ( to) is the position at the 

beginning of the time step. This is repeated with the updated position successively to 

simulate a particle trajectory. In the presence of an impermeable boundary at ~4 

particles displaced below the boundary are reflected (if z<O, then z=-z>, so that the 

p(z,t ; z,,t,)=P,(z,t ; z,,,t,)+P,(-z,t ; G,t,,) forz Wand P(z,t ; z,,t,)=Oforz<0. 

In this section, we use the first three moments of the non-Gaussian distribution 

P(z,t ; z,, t,,) to develop a higher order (in time) numerical method for simulating the 

time evolution of particle position. 

3. I Position moments 

The moments of the distribution P(z,t ; zO,tO) are defined as follows: 

z”= /dz z”P(z,t ; z&J n = 1,2,... . (7) 
0 

Equations for the time evolution of these moments can be determined by first 

differentiating Eq. (7) with respect to time, yielding 
- 

azn - -= 
I dz zng 

at o at ’ (8) 
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where P = P(z,t ; z,,t,). Combining Eqs. (2) and (8), the time derivative of the nth 

moment is 

- 
azn - -= 

I at 0 
dz zn$ 

Using a first-order Taylor series approximation for K(z), 

K(z) = K. + v,(z-zo), 

where 

K, = K(z,), and 

an approximation to Eq. (9) that is accurate to first order in z is 
- 

azn - ’ -j-dz zn$(,Ko + vo(z-zo)l$ 
Jt 0 

(9) 

(10) 

(11) 

(12) 

(13) 

Performing the integration in Eq. (13) for y1 = 1, 2, and 3 using the assumption that 

P + 0 and aP/dz -+ 0 faster than zn + 00, yields equations for the time derivatives of 

the first three moments, 

az - = (K, - v,z,)P(O) + v,, 
dt 

(14) 

$ = 6(Ko - vozo)z + 9voz2 

(15) 

(16) 



where P(0) = F<O,t;z,,,t,). If we assume either (a) z. is much greater than zero so that 

the particle has negligible probability of being displaced to z = 0 in a finite time step and 

therefore P(0) + 0, or (b) for small z. , K varies linearly and vanishes at the surface (i.e., 

K, = vozo) in accordance with surface-layer similarity theory (e.g., Businger, 1973), then 

Eq. (14) may be simplified to 

az= at v” (17) 

Integrating Eqs. (15- 17) from (z,, to) to (z, t) yields the following time-dependent 

mcment equations: 

i=z,+v,At (18) 

z’ = z,2 -I- 2( K, + v,z,)At + 2 v,At2 (1% 

&z;+(3voz; +6Kozo)At+(6v,2zo+12Kovo)At2+6v,3At3 (20) 

where At = t - to. The mean, variance and third central moment of z. may be written, 

using Eqs. (18-20), as 

i = z. + v,At, (21) 

CT: = (z -z)’ = 2KoAt + viAt2, and (22) 

(y f (z - F)” = 6Ko voAt2 + 2 $A?, (23) 

Comparison to Eqs. (5-6) shows that Eqs. (21-23) provide a higher order in time 

approximation to the moments of the particle position when v. # 0. The skewness of z 

is defined as 

s, 2 &y/o; . (24) 
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It can be seen that for K. # 0 and At CC 1, the skewness vanishes (S, + 0), and the 

probability distribution of z approaches a Gaussian distribution. However, since we have 

assumed that K, + 0 as z, + 0 in accordance with surface-layer similarity theory 

relationships for K, the higher order terms are needed even for At C< 1 in order to prevent 

the second and third moments from vanishing when the initial particle position is near the 

surface. It can be seen that as K, + 0, S, + 2 for any non-zero values of At and v,. 

In summary, the position moments given in Eqs. (21-23) are exact if K(z) is linear and 

also vanishes at z=O so that K(z) = voz, which is assumed to be the case here, at least 

near the surface. Far from the surface, Eqs. (21-23) are essentially exact if K(z) varies 

linearly with z, i.e., K(z) = K, + vo(z - z,), over the practical domain of z during At. 

Obviously, the accuracy of these moments for cases when K(z) is nonlinear will depend 

on the accuracy of the linear approximation over this domain. 

3.2 Analytic solution for special case: K(z) = vz 

The exact analytic solution to the diffusion equation, Eq. (2), for the special case in which 

there is an impermeable boundary at z=O, and K(z) = vz is 

P(z; z,, At) = --& exp[ -‘:A:‘] Io[ ‘(ri”] (25) 

(Huang, 1979), where IO is the modified Bessel function of the first kind of order zero. 
This solution, Eq. (25), can also be represented by an infinite series: 

1 
P(z ; z,,At) = - exp -(z+zo) 2 (uo)j 

vAt [ 1 vAt j=. (j!)‘( vAt)2’ ’ (26) 

For the special case of z, = 0, Eqs. (25) and (26) reduce to an exponential distribution, 

P(z; O,At) = &exp[&], which has a skewness of 2 (consistent with z moment 
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equations above for this case). Hig”rerorder terms in Eq. (26) can be also be represented 

using gamma distributions. ._ 

3.3 Approximate form for P(z) 

We explored several approximate forms for P(z)= P(z,t ; z,, to). As shown in Sections 

3.1 and 3.2, if z, > 0, then P(z) is generally non-Gaussian (with non-zero skewness) and 

approaches a Gaussian distribution (with zero skewness) only in the limit as At + 0. For 

z. = 0 and the physically realistic case in which K is linear and vanishes at z=O, P(z) is 

exponential (with skewness value of 2) regardless of the size of the time step, At. 

Therefore, in order to use longer time steps in numerical simulations we need a skewed 

distribution function from which we can generate random numbers. This distribution 

must allow a large range of skewness, with absolute values from 0 to 2, and must 

accurately simulate the case in which K is linear and vanishes at a boundary. 

The general form for P(z) that we use is 

P(z) s fop,(z) + f-1 PI tz>. (27) 

P,(z) is a skewed probability density function constructed from the lower order terms in 

the series representation of the analytic solution given in Eq. (26). These lower order 

terms are important near the surface and allow for accurate approximation of the highly 

skewed form of P(z) as z. + 0. P,(z) is a probability density function which can have 

zero or non-zero skewness. For z. >> 0, P,(z) can be used alone as an accurate 

approximation for P(z). 

We define the two terms of P(z) in Eq. (27) in the following way. First, the term fop,(z) 

is set equal to the first m+l terms from the series representation of the analytic solution 
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giver, inJZq. (26). P,(z) can, then, be represented as a combination of gamma distribution 

functions, and has the form 

P,(z) = -g&jP~(Z), 
01 0 

where 

PAZ) = ~voA;;‘+LjexP 1I 1 -=& 9 

fti = (s~~jj!exP [ 1 $ , and 

(28) 

(2% 

(30) 

(31) 

Each Pti is a gamma probability density function (for the special case whenj = 0, it is the 

exponential distribution function). This form for PO(z) is used because if m = 00, then 

fop,(z) is the exact solution for P(z) when K(z) = voz, as given in Eq. (26). 

We then determine f, and the parameters of P,(z) from the normalization condition, 
. 

J P(z)dz = 1, and the desired first three moments of z given in Eqs. (21-23). Using Eq. 

c’7), the nth moment of z can be written as 

z” = jz”Ptz)dz =fojz”Po(z)dz +f, Iz”P,(z)dz, 
0 0 -co 

(32) 

or 

where 

(33) 
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3 E jz”p,(z)dz, ’ “’ 
0 ,- . 

(34) 

- 
zl” = 5 z”P,(z)dz. 

-ca 
(35) 

(Note that the notation 2 is used here to represent the moments of the distribution PO(z), 

and does not refer to zo=z(to) used above.) Since PO(z) and f, are known, the moments 
- 
.$ , defined by Eq. (34), can be calculated using Eqs. (28-3 1) and are 

(36) 

We now have all the information we need to solve Eqs. (33) for f, and the three 
moments z, 2, and zof PI(z). Consequently, we determine f, and the three moments 
- 
zr , z, and zof P,(z) (four unknowns) from the following four equations: 

l=fo+fp (37) 

z = foz,+f,z,, (38) 

p’= foZ+ f,z:, (3% 

z’= foZ+ f,;‘. (40) 

We explored two general types of skewed P,(z) functions: (i) transformed Gaussian 

distributions, and (ii) linear combinations of two distributions (including two different 

Gaussian distributions). The first type proved to be more accurate. In specifying a 

transformed Gaussian distribution, we first define the desired random variable z from 

distribution PI(z) as follows 

z=;+x (41) 

12 



where the non-Gaussiar random variable x has zero mean and is generated by 

transforming a Gaussian? random variable r (with zero mean and variance of 1) using 

. (42) 

(A series expansion useful for evaluating x is given in the Appendix.) The value of < is 

know from Eq. (38). The parameters a and 6, needed to calculate x, are determined so that 

z has the desired variance and skewness given by 

OL’, z&z,’ (43) 

-5 where 5, zI , and 2 are defined by Eqs. (38-40). Given that P(r) is a Gaussian 

distribution, the analytic expression for P(x) is then 

P(x)= P(r)$=-&e 
r(xJ2 -- 

2 e-br(x) (45) 

where 

and 

b’ 

-aeicxcm, 
b 

k 

* Alternate distributions may be used for r which are sums of k uniform random numbers, r = c ri , where i=l 

ri is a uniform random number on (-I, +I) and I= m .The random variable r , then, has zero mean, 

variance of one, and a symmetric probability distribution with a shape that varies with k. In the limit as 

k-w, r approaches a Gaussian random number according to the Central Limit Theorem. 
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The mean of x is zero, X = 0. Using the expression for P(x), the variance of x is 

0: ~(x-i)~ =$eb2(eb2 -1). 

The skewness of x is 

(46) 

(47) 

s, = cx--? =(eb2 +2)(eb2 -f+ 
x 

(48) 

Therefore, b can be determined using Eq. (48) with S, = SZ, , where SZ, is computed using 

Eq. (44). However, there is no explicit solution for b(S,). We use an accurate polynomial 

approximation (see Appendix) for b(S,) (Newton’s method can also be used to obtain a 

solution for b iteratively to any accuracy desired). After determining the value for b, the 

value of a can be determined using Eq. (47) with the value of 0,’ = o;“, calculated using 

Eq. (43). This can be done in an efficient and accurate manner by using a series 

expansion for a/o, (see Appendix). Random values of z (for use in Monte Carlo 

numerical simulations) can be calculated-simply by obtaining a random value of r, 

transforming it to x using Eq. (42), and generating a random value of z with Eq. (41). 

Examples of the exact P(z) for the case of K(z)=vz and the corresponding approximate 

P(z) and its individual terms for m=3 are shown in Figs. 1 and 2. Fig. la shows the exact 

and approximate dimensionless distributions, vAtP(z), versus dimensionless height 

z/vAt for z,/vAt=2. Fig. lb shows the corresponding terms of the approximate 

dimensionless distribution: vA~~,P,,(z), vAtf,,P,,(z), vAtfg2Pg2(z), vAtfg3Pg3(z), and 

VA& PI (2). Fig. 2 shows the same distributions for z,/ vAt =4. These figures show that 
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for z0 close to zero the terms from P,(z) dom cnai? the approximate P(z). For larger zO , 

the P, (2) term makes a larger contribution. ‘- 

The numerical simulation method based on this approximate non-Gaussian P(z) can be 

summarized as follows. Given position z, ( to) at the beginning of a time step, a new 

particle position z(t) is generated from the non-Gaussian distribution P(z,t ; z,,t,,) , 

given by Eq. (27), which has the first three moments given by Eqs. (21-23). This is done 

by first calculating fgi, j = 0, 1,. . . m, and f,. Then, a uniform random number U on 

(0,l) is generated. If U I Affii (the smallest value of j that meets this criteria is used), 
i=O 

then a value of z from the gamma distribution PtiCz) is generated. Random values of z 

can easily be generated from a gamma distribution Pti(z) using j+l uniform random 

numbers as follows: 

, (4% 
-_ 

where the Ui, i = 1, 2, . . . (j + l), are independent uniform random variables on (0,l) 

(Ross, 1993). If U > f,, then (i) calculate crt, and SZ, , (ii) use these to calculate a, b, and 

X, and (iii) obtain a value of z from the PI distribution, as discussed above. When S;, is 

negative (when v. < 0), x can be calculated using S, = IS,, I, and then changing the sign of 

x (i.e., x=-x). For particle positions well above the surface (we use the criteria 

202 > lOK,At + 5 viAt*), it is assumed that P(z)=P, (z). Depending on the values of zo, 
~- 

At, and m, and on the form of K(Z), there may be a small probability of z < 0. Simple 

reflection is used when this occurs (i.e., if z < 0, then z=-z). 

4. EVALUATION OF METHOD 

In this section, numerical simulations using the higher order, non-Gaussian method 

described in the previous section are evaluated using the analytic solution to the diffusion 
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equation for the case in which there is an impermeable boundary at z = 0 and K = Vz. 

This is a physically realistic case since it is consistent with eddy diffusivity relationships 

for the neutral (adiabatic) atmospheric surface layer, and with relationships for the 

diabatic surface layer for heights much less than the absolute value of the Monin- 

Obukhov length (z << LU). 

For this case, the numerical method is exact as z0 + 0 (except for statistical error due to 

the finite number of trajectories computed) because the first few terms in the analytic 

solution for this case were used to construct the fop,(z) term in the P(z) distribution. As 

z. + 0, the first few terms of fop,(z) dominate the exact solution for this case. We used 

a value of m =3 for PO(z), given by Eq. (28), for the simulations in this paper. For z,>>O, 

the accuracy of the method depends on the accuracy of P,(z), which dominates. 

Numerical simulations were performed in which particle positions were all initialized to a 

value of z, at the beginning of the simulation. A total of 5 x lo5 particle trajectories were 

computed in each simulation. Particle position distributions, P(z), were calculated by 

sampling particles in 40 evenly spaced bins between z =0 and 4 i. 

Figure 3 shows examples of the dimensionless probability density, P(Z), where Z= z/ vt , 

simulated using the non-Gaussian method, as well as the analytic solution, given in Eq. 

(29, for initial particle positions at the surface, Z,=O. This method is exact after a single 

time step for this case ( P(z) = Pgo(z) , an exponential distribution). This is reflected in the 

excellent agreement between the analytic solution and numerical solution using a single 

step, i.e., a dimensionless time step of At/t=1 (Fig. 3a). The_results of simulations with 

the non-Gaussian method are also excellent using a smaller time step, At/t=O. 1 (Fig. 3b), 

with very small error introduced because the method is approximate for particle positions 

greater than zero at intermediate times in this simulation. 
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For comparison, numerical simulations were also performed using the lower order, 

Gaussian numerical method. This method was described at the beginning of Section .3, 

and uses a Gaussian position distribution with moments defined by Eqs. (5) and (6). 

Figure 4 shows the results for Z,=O obtained using the Gaussian method and time steps 

of At/t=l, 0.1, and 0.01. These results show that, compared to the non-Gaussian method, 

the Gaussian method requires considerably smaller time steps (by a factor of more than 

100) to approach the analytic solution for this case. Consequently, the computer CPU 

time required to achieve accurate solutions for this case with the Gaussian method is 

considerably greater (by a factor of more than 50). 

Figure 5 shows an example of P(Z) simulated using the non-Gaussian method and the 

analytic solution for a initial position above the surface, Z,=4. This numerical method is 

not exact in a single step for this Z,, but the numerically simulated distribution is a very 

good approximation to the analytic distribution when using a time step equal to the total 

simulation time, At/t=1 (Fig. 5a). The small numerical error quickly vanishes as the time 

step is decreased, as shown by the results of a simulation using At/t=O.l in Fig. 5b. 

Figure 6 shows the results for Z,=4 obtained using the Gaussian method and time steps 

of At/t=l, 0.1, and 0.01. These results again show that considerably smaller time steps 

are required for this lower order, Gaussian method to approach the analytic solution. 

When K is a non-linear function of z, the time step must be restricted so that the first- 

order approximation to K does not introduce unacceptable numerical error. Simulations 

were performed using the higher order, non-Gaussian method with the quadratic function 

K = vz and an initially uniform distribution of particles in order to determine the 

size time step needed to maintain the correct steady-state uniform distribution. The results 

of these simulations (not shown) indicate that restricting the time step so that 02(At)/h is 
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less than or equal to 0.1 results in fractional error of less than approximately 4% in the 

calculated probability density. 

5. SUMMARY 

We presented the development and testing of a higher order Lagrangian stochastic 

method for solving the diffusion equation that uses a non-Gaussian particle position 

distribution. This method uses a first-order approximation for the spatial variation of the 

eddy diffusivity. An approximation to the non-Gaussian particle position distribution is 

defined using the first three position moments. The case when the eddy diffusivity varies 

linearly to zero at a boundary is handled by using the first few terms of the series 

representation of the analytic solution for this case in constructing the approximate non- 

Gaussian distribution. This approach accounts for the effect that the first-order spatial 

variation of the eddy diffusivity has on the mean, variance, and third moment of the 

particle position distribution. In contrast, the previously used method that employs a 

Gaussian particle position distribution only accounts for this effect on the mean of the 

distribution. The new non-Gaussian method is of higher order in time than this previously 

used Gaussian method. Comparison of numerical simulation results to analytic solutions 

for a linear eddy diffusivity show that this new higher order, non-Gaussian method is 

accurate and significantly more efficient than the lower order, Gaussian method. 
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APPENDIX 

A truncated series expansion may be used to accurately evaluate x as follows: 

x = +br - xbb) 

where 
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and, in general, 

Xbr +?‘r-1). 

However, for small absolute values of br, [brie 0.1, we use the approximation 

An accurate polynomial approximation for b is 

b(S,) = c,S, +c$;: +c5$ +c,S, 

where cI = +, cg = -0.02124555359, cs = 0.002368933581, c7 = -0.000165946201. 

The form of this approximation was taken from the reversion of the series expansion for 

S,. The first term is identical to the first term of the reversion series expansion. The 

coefficients for the third, sixth and seventh order terms, however, were determined using 

a least squares procedure to achieve the best overall fit to the exact values in the range 

0 I S, 52. This approximation results in b values which produce S, values with 

fractional errors less than 0.0003, compared to the desired S, value in the range 

0 I S, I 2. A series expansion approximation for u/o,, truncated after sixth order in b, is 
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FIGURE CAPTIONS 

Fig. 1. Example of dimensionless probability density, vAtP(z), versus dimensionless 

height, z/vAt , for z,/ vAt=2: (a) exact analytic distribution (solid line) and approximate 

distribution used with the higher order non-Gaussian numerical method (dashed line), and 

(b) terms in the approximate distribution, v&f&&), v&f&,(z), Wf$‘,,(z)~ 

vAtfg3Pg3(z) (solid lines), and VA@,,,(Z) (dashed line). 

Fig. 2. Same as Fig. 1, except for z,/vAt=4. 

Fig. 3. Dimensionless probability density scaled by the mean height, 2 P(Z), versus 

height, Z/z (where Z= z/ vt) for initial height Z,=O calculated from simulations using the 

higher order, non-Gaussian method and time steps of (a) At/t=1 and (b) At/t=O. 1. 

Fig. 4. Dimensionless probability density scaled by the mean height, 2 P(Z), versus 

height, Z/z, for initial height Z,=O calculated from simulations using the lower order, 

Gaussian method and time steps of (a) At/t=l, (b) At/t=O.l, and (c) At/t=O.Ol. 

Fig. 5. Same as Fig. 3 except for initial height Z,,=4. 

Fig. 6. Same as Fig. 4 except for initial height Z,=4. 
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